Adaptive Galerkin Approximation Algorithms for Partial Differential Equations in Infinite Dimensions

نویسنده

  • CHRISTOPH SCHWAB
چکیده

Space-time variational formulations of infinite-dimensional Fokker–Planck (FP) and Ornstein–Uhlenbeck (OU) equations for functions on a separable Hilbert space H are developed. The well-posedness of these equations in the Hilbert space L2(H,μ) of functions on H, which are square-integrable with respect to a Gaussian measure μ on H, is proved. Specifically, for the infinite-dimensional FP equation, adaptive space-time Galerkin discretizations, based on a tensorized Riesz basis, built from biorthogonal piecewise polynomial wavelet bases in time and the Hermite polynomial chaos in the Wiener–Itô decomposition of L2(H,μ), are introduced and are shown to converge quasioptimally with respect to the nonlinear, best N -term approximation benchmark. As a consequence, the proposed adaptive Galerkin solution algorithms perform quasioptimally with respect to the best N -term approximation in the finite-dimensional case, in particular. All constants in our error and complexity bounds are shown to be independent of the number of “active” coordinates identified by the proposed adaptive Galerkin approximation algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Galerkin approximation algorithms for Kolmogorov equations in infinite dimensions

Space-time variational formulations and adaptive Wiener–Hermite polynomial chaos Galerkin discretizations of Kolmogorov equations in infinite dimensions, such as Fokker–Planck andOrnstein–Uhlenbeck equations for functions defined on an infinite-dimensional separable Hilbert space H , are developed. The wellposedness of these equations in the Hilbert space L2(H, μ) of functions on the infinite-d...

متن کامل

Dhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations

In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...

متن کامل

A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method

In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.

متن کامل

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

Cauchy convergence schemes for some nonlinear partial differential equations

Motivated by ongoing work in the theory of stochastic partial differential equations we develop direct methods to infer that the Galerkin approximations of certain nonlinear partial differential equations are Cauchy (and therefore convergent). We develop such a result for the Navier–Stokes equations in space dimensions two and three, and for the primitive equations in space dimension two. The a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011